Références

AVERBUCH-POUCHOT, M. T. & GUITEL, J. C. (1976). Acta Cryst. B32, 2270–2274.
BONNEMAN-BÉMIA, P. (1941). Chim. Anal. 16, 395–476.
CORBRIDGE, D. E. C. & TROMANS, F. R. (1958). Anal. Chem. 30, 1101–1110. HUBER, H. (1937). Angew. Chem. 50, 323-330.

PREWITT, C. T. (1966). SFLS-5. A Fortran IV full-matrix crystallographic least-squares program.

QUIMBY, O. T. & MCCUNE, M. W. (1957). Anal. Chem. 29, 248-253.

SCHWARZ, F. (1895). Anorg. Chem. 9, 249–266. STANGE, M. (1896). Anorg. Chem. 12, 444–463.

Acta Cryst. (1977). B33, 1431–1435

Existence d'un Nouvel Anion Condensé: Cr₂PO₁₀. Structures Cristallines de Deux Phosphochromates de Baryum: BaHCr₂PO₁₀. H₂O et BaHCr₂PO₁₀. 3H₂O

PAR M. T. AVERBUCH-POUCHOT, A. DURIF ET J. C. GUITEL

Laboratoire de Cristallographie, CNRS, 166 X, Centre de Tri, 38042 Grenoble Cédex, France

(Reçu le 5 octobre 1976, accepté le 15 octobre 1976)

BaHCr₂PO₁₀. H₂O and BaHCr₂PO₁₀. 3H₂O are both triclinic; space group $P\bar{1}$, Z = 2. Unit-cell dimensions are, for the monohydrate: a = 9.333 (5), b = 7.779 (5), c = 7.526 (5) Å; $\alpha = 106.28$ (3), $\beta = 105.37$ (3), $\gamma = 94.14$ (3)°; for the trihydrate: a = 10.189 (5), b = 8.207 (5), c = 7.749 (5) Å; $\alpha = 108.80$ (3), $\beta = 107.14$ (3), $\gamma = 89.04$ (3)°. The crystal structures of these two salts have been solved from 1643 independent reflexions for the first salt (R = 0.041) and 2340 independent reflexions for the second (R = 0.059). The atomic arrangements of these two salts show the existence of a new type of condensed anion: Cr₂PO₁₀.

Introduction

Ce travail s'insère dans le cadre d'une recherche sur les anions condensés mixtes contenant du phosphore, commencée par l'étude du phosphobéryllate d'ammonium, $NH_4Be_2P_3O_{10}$ (Averbuch-Pouchot, Durif, Coing-Boyat & Guitel, 1977). Les deux sels faisant l'objet de la présente étude sont les premiers exemples de composés à tripolyanions mixtes: Cr_2PO_{10} .

Préparation chimique

Les deux composés ont été préparés à partir d'une solution d'anhydride chromique dans l'acide monophosphorique. L'introduction de carbonate de baryum dans cette liqueur provoque au bout de quelques jours une première précipitation de cristaux orangés de BaHCr₂PO₁₀.H₂O. La solution filtrée est de nouveau abandonnée pendant plusieurs jours, au bout desquels apparaissent des cristaux, également orangés, du composé trihydraté: BaHCr₂PO₁₀.3H₂O.

Caractéristiques cristallines

Les deux composés cristallisent dans le système triclinique. Leurs paramètres de maille, obtenus à partir de données enregistrées au diffractomètre automatique, sont respectivement pour BaHCr₂PO₁₀.H₂O: a =9,333, b = 7,779, c = 7,526 Å; $\alpha =$ 106,28, $\beta =$ 105,37, $\gamma =$ 94,14°; V = 496,2 Å³; et pour BaHCr₂-PO₁₀.3H₂O: a = 10,189, b = 8,207, c = 7,749 Å; $\alpha =$ 108,80, $\beta =$ 107,14, $\gamma =$ 89,04°; V = 584,0 Å³.

Les deux mailles contiennent deux unités formulaires.

Techniques expérimentales

Les différentes conditions expérimentales utilisées sont rassemblées Tableau 1. En raison des dimensions suffisamment petites des deux cristaux et de la longueur d'onde utilisée, aucune correction d'absorption n'a été faite.

Tableau 1. Conditions expérimentales

	BaHCr ₂ PO ₁₀ . H ₂ O	BaHCr ₂ PO ₁₀ .3H ₂ O
Longueur d'onde	Ag (<i>K</i> α)	Ag (<i>K</i> α)
Vitesse de balayage (°s ⁻¹)	0,04	0,03
Domaine de balayage (°)	1,60	1,20
Mode de balayage	θ/ω	ω
Durée totale de balayage	10	20

du fond continu (s)		
Domaine de mesure (°)	3-20	3-25
Dimension du cristal (mm)	$0,16 \times 0,16 \times 0,16$	$0,11 \times 0,08 \times 0,13$
Nombre de mesures	1643	2390

Détermination des structures

Elles ont été déterminées au moyen des méthodes classiques: interprétation de la fonction de Patterson pour la position des atomes de baryum, puis exploitation de synthèses de Fourier successives pour l'emplacement de tous les autres atomes de la maille. En ce qui concerne $BaHCr_2PO_{10}.3H_2O$, après avoir écarté six réflexions mal mesurées, quelques cycles d'affinement (Prewitt, 1966) amènent le facteur *R* à une valeur de 0.059.*

Pour BaHCr₂PO₁₀. H₂O, ce même facteur R a une valeur de 0,041 après quelques cycles d'affinement effectués en ayant éliminé 209 réflexions telles que $F_o < 10$ à l'échelle absolue.

En dernier lieu, des synthèses de Fourier-différence permettent de confirmer l'exactitude des formules chimiques des deux composés.

Les Tableaux 2 et 3 donnent respectivement les coordonnées des positions atomiques ainsi que les facteurs thermiques isotropes, B_{eq} et anisotropes, β_{ij} , de BaHCr₂PO₁₀. H₂O et de BaHCr₂PO₁₀. 3H₂O.

On peut trouver dans le Tableau 4 les longueurs et directions des axes des ellipsoïdes de vibration thermique du monohydrate, celles du trihydrate dans le Tableau 5.

Tableau 2. Paramètres des positions atomiques (×10⁴), B_{eq} et paramètres thermiques anisotropes, β_{ij} (×10⁵), de BaHCr₂PO₁₀.H₂O

Les écarts standard sont donnés entre parenthèses.

	x	У	Z	B _{ėq}	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Ba	1179,9(7)	4575,6(8)	2656,8 (9)	1,3	506 (7)	524 (11)	711(13)	85(6)	205 (7)	225 (8)
Cr(1)	7503 (2)	7264 (2)	2443 (2)	1,8	665 (21)	655 (29)	981 (35)	155 (20)	222 (22)	277 (25)
Р	7823 (3)	1499(3)	3165 (3)	1,4	551 (33)	468 (44)	761 (54)	28 (30)	198 (34)	161 (39)
Cr(2)	2536 (2)	9304 (2)	1187(2)	1,9	707 (23)	666 (29)	979 (35)	45 (20)	200 (22)	252 (25)
O(E11)	5879 (8)	7032 (10)	974 (10)	2,6	681 (101)	1117 (154)	1661 (192)	203 (102)	120 (112)	547 (139)
O(E12)	8613 (8)	6208 (9)	1316(10)	2,2	796 (103)	816 (138)	1334 (171)	181 (96)	316 (107)	429 (125)
O(E13)	7362 (8)	6521 (10)	4181(10)	2,5	858 (109)	1226 (156)	1056 (167)	95 (105)	209 (108)	457 (129)
O(L1)	8264 (9)	9696 (9)	3456 (10)	2,6	1111 (118)	566 (133)	1373 (178)	213 (100)	32(116)	330 (123)
O(E1)	6731 (8)	2170 (10)	4409 (10)	2,3	835 (107)	1087 (150)	1062 (165)	96 (101)	479 (108)	130(126)
O(<i>E</i> 2)	9135 (7)	2970 (9)	3904 (10)	1,8	551 (90)	639 (127)	1122 (156)	-12(86)	290 (96)	91 (113)
O(L2)	6894 (8)	1135 (9)	1023 (9)	2,2	786 (104)	1128 (150)	798 (154)	62 (99)	167 (100)	216 (123)
O(E21)	1462 (8)	7499 (9)	1032 (10)	2,4	835 (107)	917 (144)	1456 (180)	-37(100)	361 (111)	434 (129)
O(E22)	1629 (9)	1009 (10)	1312(10)	3,1	1431 (136)	788 (145)	1802 (202)	554 (115)	557 (134)	425 (140)
O(<i>E</i> 22)	4036 (9)	9781 (10)	2983 (10)	3,1	948 (117)	1980 (196)	968 (173)	-144(121)	39 (112)	636 (149)
O(W)	4155 (8)	4657 (10)	2877 (10)	3,3	492 (100)	2146 (207)	1530 (198)	-124 (114)	237 (112)	98 (160)

Tableau 3. Paramètres des positions atomiques (×10³), B_{eq} et paramètres thermiques anisotropes, β_{ij} (×10⁵), de BaHCr₂PO₁₀. 3H₂O

Les écarts standard sont donnés entre parenthèses.

	х.	У	Ζ	B _{ėq}	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Ba	167,28 (6)	235,36(8)	165,67 (8)	1,4	325 (5)	600 (9)	608 (10)	-15(5)	114(6)	67(7)
Cr(1)	591,9(2)	402,3 (2)	302,7 (2)	1,9	416(16)	765 (25)	971 (31)	26(16)	172 (18)	49 (23)
Cr(2)	-3.9(2)	714,9(2)	384,0 (2)	1,8	493 (16)	764 (25)	758 (29)	39 (16)	123 (17)	231 (22)
P	799,8 (2)	142,7 (3)	202,1 (3)	1.3	316(22)	536 (36)	532 (42)	-9(23)	157 (25)	-17(32)
O(E1)	907,0(6)	123,6 (8)	103,4 (8)	1,7	370 (65)	765 (110)	806 (127)	36 (68)	246 (73)	27 (96)
O(E2)	702,1(7)	971,8 (8)	107,3 (9)	2,0	520 (72)	733 (111)	811 (130)	234 (72)	210 (79)	-204 (97)
O(L1)	712,2 (6)	293,3 (9)	174,5 (9)	2,1	435 (70)	1177 (129)	833 (135)	229 (76)	1481 (78)	336 (108)
O(L2)	851,3(6)	170,4 (8)	418,0 (8)	1,8	474 (69)	814 (113)	692 (126)	-59 (71)	113 (76)	114 (97)
O(E11)	324,3(7)	517(1)	475(1)	3,2	547 (82)	1615 (162)	1067 (157)	-200(91)	89 (91)	-386 (128)
O(E12)	531,2(9)	550(1)	213(1)	3,5	1003 (106)	1162 (149)	2186 (215)	341 (102)	529 (122)	645 (149)
O(E13)	470,7(7)	263,9 (9)	271 (1)	2,7	529 (78)	891 (126)	1830 (124)	-89 (79)	326 (97)	107 (123)
O(E21)	864,8(7)	751(1)	461(1)	2,6	576 (79)	1279 (141)	1236 (157)	182 (85)	298 (91)	200 (120)
O(E22)	985,8(7)	793,3 (9)	217(1)	2,7	799 (89)	1258 (141)	986 (147)	-83 (89)	49 (91)	591 (118)
O(E23)	13,3(7)	510,9 (9)	311(1)	2,6	814 (91)	703 (117)	1347 (162)	50 (83)	308 (98)	71 (111)
O(W1)	285,5(8)	964,8 (9)	305(1)	2,8	847 (92)	1145 (140)	1447 (168)	77 (91)	389 (101)	607 (127)
O(W2)	237,8 (9)	512(1)	64(1)	4,1	1007 (110)	1965 (190)	2011 (217)	-490 (115)	-29 (122)	1134 (170)
O(W3)	558.6(7)	898.5 (9)	294(1)	2.7	635 (83)	924 (129)	1813 (183)	7 (83)	449 (101)	366 (125)

^{*} La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32262: 27 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Description des structures

La Fig. 1 représente la projection de l'arrangement atomique de BaHCr₂PO₁₀.H₂O sur le plan *bc*, la Fig. 2 celui de BaHCr₂PO₁₀.3H₂O sur le plan *ab*.

Dans le cas du monohydrate, l'atome de baryum est entouré de neuf atomes d'oxygène dont un appartient à une molécule d'eau. Le Tableau 6 donne les distances Ba-O.

Les atomes de baryum sont liés entre eux par deux atomes d'oxygène et forment ici un ruban infini (Fig. 3a).

En ce qui concerne le trihydrate le baryum a un voisinage constitué par dix atomes d'oxygène dont deux appartenant à des molécules d'eau. Les distances Ba-O sont données dans le Tableau 7. Ici les atomes de baryum sont liés deux à deux par deux atomes d'oxygène et forment des groupements isolés (Fig. 3b).

Tableau 5. Longueurs des axes principaux des ellipsoïdes de vibration des atomes et orientation par rapport aux axes cristallographiques pour BaHCr₂PO₁₀.3H₂O

Tableau	4. Longueu	rs des axes	principaux	des		$U(\text{\AA})$	001	004	0.01
ellipsoïdes	de vibration	des atomes	et orientation	on par		(×10 ²)	θ^{o}/a	θ^{o}/b	θ°/c
rappo	ort aux axes d	ristallogra	phiaues pou	r	Ba	15	93	24	130
••	BaHC	r.POH.				13	19	95	122
		- 2- 0 10 2	~			11	71	66	57
	$U(\rm{\AA})$				Cr(1)	18	100	142	33
	$(\times 10^{2})$	θ°/a	€0/h	θ°/c		14	16	105	106
D -		0 , u	0,0	0 / 0	- (-)	14	77	56	62
Ва	14	22	94	84	Cr(2)	16	18	76	123
	13	112	79	27		15	102	14	100
$C_{-}(1)$	12	86	11	117	_	14	77	92	35
Cr(1)	16	13	82	112	Р	15	96	29	132
	15	87	92	25		12	16	77	102
р	13	102	8	102	0(50)	10	104	65	44
r	15	19	105	88	O(E1)	18	91	29	135
	14	107	101	5		14	49	67	74
C(2)	11	82	19	95	O(E2)	12	139	73	49
CI(2)	17	85	101	109	O(E2)	21	69	143	22
	13	80	101	100		15	155	99	45
O(F(1))	21	121	10	100	$O(T_{1})$	10	74	54	100
0(211)	18	61	30	22	O(L1)	20	122	23	109
	15	45	120	54 60		13	122	05	20
O(E12)	18	68	85	45	$O(I_{2})$	15	41	27	107
0(212)	18	23	80	128	O(L2)	17	114	27	107
	14	97	5	110		13	75	74	40
O(E13)	19	32	122	108	O(F(1))	13	80	23	130
-(18	58	43	92	O(L11)	18	23	08	123
	15	89	116	18		10	23 67	60	57
O(L1)	24	25	84	130	O(F12)	23	72	83	43
- ()	17	68	88	43	O(E I L)	23	147	116	43
	12	100	6	104		17	116	27	97
O(E1)	20	54	131	59	O(E13)	23	92	123	20
· · ·	17	54	43	100	0(2.5)	17	133	52	70
	14	124	78	33		14	43	55	93
O(<i>E</i> 2)	18	74	123	35	O(E21)	22	74	22	128
	15	26	103	124	-()	17	64	82	51
	13	70	36	87		15	31	10	118
O(L2)	19	144	50	87	O(E22)	22	142	61	67
	18	54	40	117	. ,	18	53	43	97
	14	87	88	27		14	85	118	24
O(E21)	19	30	120	83	O(E23)	20	120	123	22
	19	101	81	26		20	31	103	77
	14	63	31	115		14	95	36	73
O(E22)	24	22	76	98	O(W1)	20	29	89	80
	21	99	102	9		20	112	53	56
a (12	110	18	93		16	107	143	35
O(E23)	25	126	37	80	O(W2)	30	132	56	63
	19	37	57	111		19	65	103	43
0(11)	14	82	104	24		17	52	37	121
O(W)	27	99	15	118	O(W3)	22	82	108	25
	19	108	78	29		17	130	47	75
	14	21	81	94		16	41	49	110

Fig. 1. Projection de $BaHCr_2PO_{10}$. H_2O sur le plan *bc*.

Fig. 2. Projection de BaHCr₂PO₁₀. $3H_2O$ sur le plan *ab*.

Tableau 6. Distances interatomiques (Å) de l'environnement du baryum pour $BaHCr_2PO_{10}$. H₂O

Ba-O(E12)	2,866 (7)	Ba-O(E1)	2,984 (6)
Ba - O(E12)	2,942 (8)	Ba-O(E21)	2,881 (8)
Ba-O(E2)	2,706(8)	Ba-O(E13)	2,795 (8)
Ba-O(E2)	2,849 (7)	Ba - O(W)	2,732 (8)
Ba-O(E22)	2,762 (7)		

Fig. 3. Enchaînements des atomes de baryum (a) dans $BaHCr_2$ -PO₁₀. H₂O et (b) dans $BaHCr_2PO_{10}$. 3H₂O.

Tableau 7. Distances interatomiques (Å) dans l'environnement du baryum pour BaHCr₂PO₁₀. 3H₂O

Ba-O(E1)	2,674 (6)	Ba-O(E2)	2,899 (7)
Ba-O(E1)	2,964 (6)	Ba-O(E22)	2,846 (7)
Ba-O(E11)	2,818 (6)	Ba-O(E23)	2,850 (7)
Ba-O(E11)	2,818(6)	$\begin{array}{c} Ba-O(E23)\\ Ba-O(W1) \end{array}$	2,850 (7)
Ba-O(E21)	2,972(8)		2,869 (8)
Ba-O(E13)	2,948 (7)	$Ba = O(W^2)$	2,809(0)

Tableau 8. Distances interatomiques (Å) et principaux angles (°) de liaison dans l'anion Cr_2PO_{10} de BaHCr₂PO₁₀.H₂O

Les valeurs soulignées sont les distances Cr-O et P-O.

Cr(1)	O(E11)	O(E12)	O(E13)	O(L1)
O(E11)	1,585 (7)	2,64 (1)	2,60 (1)	2,768 (9)
O(E12)	110,2 (4)	1,630 (8)	2,67 (1)	2,818 (9)
O(E13)	109,1 (4)	111,8 (4)	1,600 (9)	2,78 (1)
O(<i>L</i> 1)	108,3 (4)	109,1 (4)	108,2(4)	1,826 (7)
Р	O(E1)	O(<i>E</i> 2)	O(<i>L</i> 1)	O(L2)
O(E1)	1,579 (9)	2,44 (1)	2,53 (1)	2,50(1)
O(<i>E</i> 2)	105,7 (4)	1,478 (6)	2,50 (1)	2,556 (8)
O(L1)	108,3 (4)	112,1 (4)	1,538 (8)	2,52(1)
O(<i>L</i> 2)	106,0 (4)	115,2 (4)	109,2 (4)	1,549 (7)
Cr(2)	O(E21)	O(E22)	O(E23)	O(L2)
O(E21)	1,616 (8)	2,65(1)	2,666 (9)	2,79 (1)
O(E22)	110,5 (4)	1,611 (8)	2,65 (1)	2,78 (1)
O(E23)	111,9 (4)	111,0 (4)	1,602 (7)	2,77 (1)
O(<i>L</i> 2)	108,2 (4)	107,6 (4)	107,5 (4)	1,828 (8)
Cr(1) - P Cr(2) - P	3,142 (3)	Cr(1) - Cr(2) - Cr(2	D(L1) - P D(L2) - P	138,0 (5)
$C(2)-\mathbf{r}$	5,078(5)	C(2) = C	$J(L_2) - P$	151,2 (5,

Dans les deux structures, les atomes d'oxygène formant le voisinage du baryum sont des atomes d'oxygène O(Eii) qui n'ont qu'une seule liaison avec le phosphore ou le chrome.

Dans les deux arrangements atomiques les atomes de baryum maintiennent la cohésion entre les groupements anioniques Cr_2PO_{10} .

Les anions Cr₂PO₁₀ possèdent les mêmes caractéristiques dans le deux composés (Tableaux 8 et 9). Les distances Cr-O sont en movenne celles observées dans d'autres tripolychromates (Löfgren, 1974).

Par contre, on peut constater quelques différences dans les distances P-O du tétraèdre central PO₄ par rapport à celles rencontrées jusqu'alors dans d'autres tripolyphosphates. En effet, on a ici des distances Tableau 9. Distances interatomiques (Å) et principaux angles (°) de liaison dans l'anion Cr_2PO_{10} de BaHCr₂PO₁₀.3H₂O

Les valeurs soulignées sont les distances Cr-O et P-O.

Cr(1)	O(E11)	O(E12)	O(E13)	O(L1)
O(E11)	1,595 (6)	2,65 (1)	2,624 (9)	2,79(1)
O(E12)	111,5 (4)	1,612 (9)	2,64 (1)	2,78(1)
O(E13)	110,4 (4)	110,7 (4)	1,601 (8)	2,81 (1)
O(<i>L</i> 1)	108,2 (4)	106,8 (4)	109,1 (4)	1,843 (7)
Р	O(<i>E</i> 1)	O(<i>E</i> 2)	O(L1)	O(L2)
O(E1)	1,487 (8)	2,46 (1)	2,498 (9)	2,57(1)
O(<i>E</i> 2)	107,5 (4)	1,565 (6)	2,52(1)	2,482 (9)
O(<i>L</i> 1)	110,9 (4)	108,0 (4)	1,547 (8)	2,49 (1)
O(<i>L</i> 2)	116,5 (4)	106,2 (4)	107,5 (4)	1,538 (7)
Cr(2)	O(<i>E</i> 21)	O(E22)	O(E23)	O(<i>L</i> 2)
O(E21)	1,605 (8)	2,65 (1)	2,64 (1)	2,782 (9)
O(E22)	111,8 (4)	1,601 (9)	2,63 (1)	2,751 (9)
O(E23)	110,5 (5)	110,1 (4)	1,610(7)	2,834 (8)
O(<i>L</i> 2)	107,7 (4)	106,1 (4)	110,5 (3)	1,836 (5)
Cr(1)-P Cr(2)-P	3,064 (3) 3,116 (2)	Cr(1)—(Cr(2)—(O(<i>L</i> 1)−P O(<i>L</i> 2)−P	129,1 (4) 134,7 (4)

Tableau 10. Distances interatomiques (Å) de O(W3) à ses plus proches voisins dans BaHCr₂PO₁₀. 3H₂O

O(<i>W</i> 3)–O(<i>W</i> 1)	2,887 (9)	O(<i>W</i> 3)–O(<i>E</i> 12)	2,72(1)
O(W3) - O(W1)	2,85 (1)	O(W3)-O(E2)	2,54 (1)

phosphore-oxygène de liaison beaucoup plus courtes (1,54 Å en moyenne pour les deux structures) que les distances habituelles: 1,60 Å pour, par exemple, $Zn_2HP_3O_{10}.6H_2O$ (Averbuch-Pouchot & Guitel, 1976). Notons enfin la présence dans la structure de BaHCr₂PO₁₀.3H₂O d'une molécule d'eau O(W3) non liée à des cations. Le Tableau 10 donne les distances de cette molécule d'eau avec ses plus proches voisins.

Références

- AVERBUCH-POUCHOT, M. T., DURIF, A. COING-BOYAT, J. & GUITEL, J. C. (1977). Acta Cryst. B33, 203–205.
- AVERBUCH-POUCHOT, M. T. & GUITEL, J. C. (1976). Acta Cryst. B32, 1670–1673.
- Löfgren, P. (1974). Chem. Scripta, 5, 91–96.
- PREWITT, C. T. (1966). SFLS-5. A Fortran IV full-matrix crystallographic least-squares program.